9,702 research outputs found

    Using a group decision support system to make investment prioritisation decisions

    Get PDF

    A Markov Chain Monte Carlo approach for measurement of jet precession in radio-loud active galactic nuclei

    Get PDF
    © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Jet precession can reveal the presence of binary systems of supermassive black holes. The ability to accurately measure the parameters of jet precession from radio-loud AGN is important for constraining the binary supermassive black hole population, which are expected as a result of hierarchical galaxy evolution. The age, morphology, and orientation along the line of sight of a given source often result in uncertainties regarding jet path. This paper presents a new approach for efficient determination of precession parameters using a 2D MCMC curve-fitting algorithm which provides us a full posterior probability distribution on the fitted parameters. Applying the method to Cygnus A, we find evidence for previous suggestions that the source is precessing. Interpreted in the context of binary black holes leads to a constraint of parsec scale and likely sub-parsec orbital separation for the putative supermassive binary.Peer reviewe

    Enlarged symmetry algebras of spin chains, loop models, and S-matrices

    Full text link
    The symmetry algebras of certain families of quantum spin chains are considered in detail. The simplest examples possess m states per site (m\geq2), with nearest-neighbor interactions with U(m) symmetry, under which the sites transform alternately along the chain in the fundamental m and its conjugate representation \bar{m}. We find that these spin chains, even with {\em arbitrary} coefficients of these interactions, have a symmetry algebra A_m much larger than U(m), which implies that the energy eigenstates fall into sectors that for open chains (i.e., free boundary conditions) can be labeled by j=0, 1, >..., L, for the 2L-site chain, such that the degeneracies of all eigenvalues in the jth sector are generically the same and increase rapidly with j. For large j, these degeneracies are much larger than those that would be expected from the U(m) symmetry alone. The enlarged symmetry algebra A_m(2L) consists of operators that commute in this space of states with the Temperley-Lieb algebra that is generated by the set of nearest-neighbor interaction terms; A_m(2L) is not a Yangian. There are similar results for supersymmetric chains with gl(m+n|n) symmetry of nearest-neighbor interactions, and a richer representation structure for closed chains (i.e., periodic boundary conditions). The symmetries also apply to the loop models that can be obtained from the spin chains in a spacetime or transfer matrix picture. In the loop language, the symmetries arise because the loops cannot cross. We further define tensor products of representations (for the open chains) by joining chains end to end. The fusion rules for decomposing the tensor product of representations labeled j_1 and j_2 take the same form as the Clebsch-Gordan series for SU(2). This and other structures turn the symmetry algebra \cA_m into a ribbon Hopf algebra, and we show that this is ``Morita equivalent'' to the quantum group U_q(sl_2) for m=q+q^{-1}. The open-chain results are extended to the cases |m|< 2 for which the algebras are no longer semisimple; these possess continuum limits that are critical (conformal) field theories, or massive perturbations thereof. Such models, for open and closed boundary conditions, arise in connection with disordered fermions, percolation, and polymers (self-avoiding walks), and certain non-linear sigma models, all in two dimensions. A product operation is defined in a related way for the Temperley-Lieb representations also, and the fusion rules for this are related to those for A_m or U_q(sl_2) representations; this is useful for the continuum limits also, as we discuss in a companion paper

    Associative-algebraic approach to logarithmic conformal field theories

    Get PDF
    We set up a strategy for studying large families of logarithmic conformal field theories by using the enlarged symmetries and non--semi-simple associative algebras appearing in their lattice regularizations (as discussed in a companion paper). Here we work out in detail two examples of theories derived as the continuum limit of XXZ spin-1/2 chains, which are related to spin chains with supersymmetry algebras gl(nnn|n) and gl(n+1nn+1|n), respectively, with open (or free) boundary conditions in all cases. These theories can also be viewed as vertex models, or as loop models. Their continuum limits are boundary conformal field theories (CFTs) with central charge c=2c=-2 and c=0c=0 respectively, and in the loop interpretation they describe dense polymers and the boundaries of critical percolation clusters, respectively. We also discuss the case of dilute (critical) polymers as another boundary CFT with c=0c=0. Within the supersymmetric formulations, these boundary CFTs describe the fixed points of certain nonlinear sigma models that have a supercoset space as the target manifold, and of Landau-Ginzburg field theories. The submodule structures of indecomposable representations of the Virasoro algebra appearing in the boundary CFT, representing local fields, are derived from the lattice. A central result is the derivation of the fusion rules for these fields

    But is it feminist art?

    Get PDF

    Kondo effect in a double quantum-dot molecule under the effect of an electric and magnetic field

    Full text link
    Electron tunneling through a double quantum dot molecule, in the Kondo regime, under the effect of a magnetic field and an applied voltage, is studied. This system possesses a complex response to the applied fields characterized by a tristable solution for the conductance. The different nature of the solutions are studied in and out thermodynamical equilibrium. It is shown that the interdot coupling and the fields can be used to control the region of multistability. The mean-field slave-boson formalism is used to obtain the solution of the problem.Comment: 5 pages, 4 figures. To appear in Sol. State Com

    Bimodule structure in the periodic gl(1|1) spin chain

    Full text link
    This paper is second in a series devoted to the study of periodic super-spin chains. In our first paper at 2011, we have studied the symmetry algebra of the periodic gl(1|1) spin chain. In technical terms, this spin chain is built out of the alternating product of the gl(1|1) fundamental representation and its dual. The local energy densities - the nearest neighbor Heisenberg-like couplings - provide a representation of the Jones Temperley Lieb (JTL) algebra. The symmetry algebra is then the centralizer of JTL, and turns out to be smaller than for the open chain, since it is now only a subalgebra of U_q sl(2) at q=i, dubbed U_q^{odd} sl(2). A crucial step in our associative algebraic approach to bulk logarithmic conformal field theory (LCFT) is then the analysis of the spin chain as a bimodule over U_q^{odd} sl(2) and JTL. While our ultimate goal is to use this bimodule to deduce properties of the LCFT in the continuum limit, its derivation is sufficiently involved to be the sole subject of this paper. We describe representation theory of the centralizer and then use it to find a decomposition of the periodic gl(1|1) spin chain over JTL for any even number N of tensorands and ultimately a corresponding bimodule structure. Applications of our results to the analysis of the bulk LCFT will then be discussed in the third part of this series.Comment: latex, 42 pp., 13 figures + 5 figures in color, many comments adde
    corecore